
1

Introduction to Database
Systems

CSE 444

Lecture #2
Jan 8 2001

2

Enrollment Closed

3

Announcement: Homework

aHW#1 is being handed out
⌧Due Wed Jan 17
⌧Requires use of SQL Server

aHomework is individual work
⌧Even when you are asked to share an account

aNo late submission
⌧You will lose entire credit

aIn the future, we will only announce availability
of homework/solutions

⌧Download from the website

4

Announcement:
Course Project

aGoal: Build end to end database application with
web front-end

aTasks
`Find a database application
`Model the data and define application requirements
`Design and implement relational schema
`Populate database
`Build a web-based front end

aYour application should be nontrivial
`Sample applications and other details available in

course web pages

5

Announcement:
Course Project
a Group Project

`Important: Must work in Team of 3
`Each member must have well-defined contribution
`Send yana@cs team information ASAP
⌧Latest by Jan 12 by email

a Stages
`Formation of Group
`Informal Proposal and ASP Programming
`Formal design (graded)
`Project Report (graded)
`Interview and Demo (graded)
⌧March 7,9

a Requires significant design and implementation
`Start now!
`Get familiar with software

The Relational Data Model

Reading: 3.1, 3.5.1-3.5.3

2

7

Data Models

aA data model is a collection of
concepts for describing data.
aThe relational model of data is the most

widely used model today.
`Main concept: relation, basically a table

with rows and columns.
`Every relation has a schema, which

describes the columns, or fields.

8

The Relational Data Model

Database
Model
(ODL, E/R)

Relational
Schema

Physical
storage

ODL definitions

Diagrams (E/R)

Tables:
column names: attributes
rows: tuples

Complex
file organization
and index
structures.

9

Terminology

Name Price Category Manufacturer

gizmo $19.99 gadgets GizmoWorks

Power gizmo $29.99 gadgets GizmoWorks

SingleTouch $149.99 photography Canon

MultiTouch $203.99 household Hitachi

tuples

Attribute names
Table name

Products:

10

Domains

aeach attribute has a type
amust be atomic type called domain
aexamples:
`Integer
`String
`Real
`…

11

Schemas

a Relational Schema:
`Relation name plus attribute names
`E.g. Product(Name, Price, Category, Manufacturer)
`In practice we add the domain for each attribute

a Database Schema
`Set of relational schemas
`E.g. Product(Name, Price, Category, Manufacturer)

Vendor(Name, Address, Phone)

12

Instances

aAn instance of a relational schema R(A1,…,Ak),
is a relation with k attributes with values of
corresponding domains

aAn instance of a database schema R1(…),
R2(…), …, Rn(…), consists of n relations, each
an instance of the corresponding relational
schema.

3

13

Example

Name Price Category Manufacturer

gizmo $19.99 gadgets GizmoWorks

Power gizmo $29.99 gadgets GizmoWorks

SingleTouch $149.99 photography Canon

MultiTouch $203.99 household Hitachi

Relational schema:Product(Name, Price, Category, Manufacturer)
Instance:

14

Schemas and Instances

aAnalogy with programming languages:
`Schema = type
`Instance = value

aImportant distinction:
`Database Schema = stable over long periods

of time
`Database Instance = changes constantly, as

data is inserted/updated/deleted

15

Integrity Constraints (ICs)

aIC: condition that must be true for any
instance of the database; e.g., domain
constraints.
` ICs are specified when schema is defined.
` ICs are checked when relations are modified.

aA legal instance of a relation is one that
satisfies all specified ICs.
`DBMS should allow only legal instances.

aIf the DBMS checks ICs, stored data is more
faithful to real-world meaning.
`Avoids many data entry errors, too!

16

Keys

aExamples:

Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2))

� “For a given student and course,
there is a single grade.”

� “No two students have the same
sid and no two students have the
same login. Furthermore, any
other table wishing to reference a
student should reference the sid
field if possible.”

Students
(sid CHAR(20)
login CHAR(10),
gpa REAL, …,)

17

Foreign Keys

aOnly students listed in the Students relation
should be allowed to enroll for courses.

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

18

Foreign Keys, Referential
Integrity

aForeign key: Set of fields in one relation
that is used to `refer’ to a tuple in another
relation
`Must correspond to primary key of the second

relation
`Like a `logical pointer’

a If all foreign key constraints are enforced,
referential integrity is achieved
`No dangling references

4

19

Integrity Constraints and
Semantics
aICs are based upon the semantics of the real-

world enterprise
aWe can check a database instance to see if

an IC is violated, but we can NEVER infer that
an IC is true by looking at an instance.

aKey and foreign key ICs are the most
common; more general ICs supported too.

20

Relational Operators and
Relational Algebra

Reading: 4.1, 4.5-4.8

Set-Oriented Operations:
Relational Algebra

aBasic operations:
`Selection () Selects a subset of rows
`Projection () Deletes unwanted columns
`Set-difference () Tuples in reln. 1, but not in reln. 2.
`Union () Tuples in reln. 1 and in reln. 2.
`Cross-product () Allows us to combine two relations

aSince each operation returns a relation, operations
can be composed! (Algebra is “closed”)

Example

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

a“Sailors” and “Reserves”
relations for our
examples.

aAssume that names of
fields in query results
are `inherited’ from
names of fields in query
input relations.

Projection sname rating

yuppy 9
lubber 8
guppy 5
rusty 10

π
sname rating

S
,

()2

age
35.0
55.5

πage S()2

a Retains only attributes that are in
projection list.

a Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the input relation.

a Projection operator has to
eliminate duplicates! (Why??)
`Note: real systems typically

don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)

Selection

σ
rating

S>8
2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σ
sname rating rating

S
,

(())>8
2

a Selects rows that satisfy
selection condition.

a No duplicates in result!
(Why?)

a Schema of result
identical to schema of
input relation.

a Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

5

Union, Intersection, Set-
Difference

aAll of these operations
take two input
relations, which must
be union-compatible:
`Same number of

fields.
``Corresponding’

fields have the same
type.

aWhat is the schema of
result?

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−

Cross-Product

aEach row of S1 is paired with each row of
R1.

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Joins

aCondition Join: R C S = σC (R × S)
aEqui-Join: A special case of condition join where

the condition c contains only equalities

S1 sid R1
aResult schema similar to cross-product, but only

one copy of fields for which equality is specified.
aNatural Join: Equijoin on all common fields (fields

with the same name).

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

><

><

Example of Composition and
Equivalence

aFind names of sailors who’ve reserved boat
#103
aSolution:

π σsname bid
serves Sailors((Re))=103

><

π σsname bid
serves Sailors((Re))=103

><

Find names of sailors who’ve
reserved a red boat

aInformation about boat color only
available in Boats; so need an extra join:

π σsname color red
Boats serves Sailors((

' '
) Re)= >< ><

� A more efficient solution:

π π π σsname sid bid color red
Boats s Sailors(((

' '
) Re))= >< ><

30

SQL

Reading: Sec 5 (all subsections, except
5.10)

6

Why yet another
Language?

aBuilt-in support for set-oriented retrieval of
data from a “large” database.
aQuery Languages != programming

languages!
`QLs not expected to be “Turing complete”
`QLs not intended to be used for complex

computation

Basic SQL
Query

arelation-list A list of relation names (possibly with a
range-variable after each name).

atarget-list A list of attributes of relations in relation-
list

aqualification Comparisons: Attr op const or Attr1 op
Attr2, where op is one of
connected using AND, OR and NOT.

a DISTINCT is an optional keyword indicating that the
answer should not contain duplicates.
`Default is that duplicates are not eliminated!

SELECT [DISTINCT] targetlist
FROM relation-list
WHERE qualification

≠≥≤=<> ,,,,

33

Selections

Company(sticker, name, country, stockPrice)

Find all US companies whose stock is > 50:

SELECT *
FROM Company
WHERE country=“USA” AND stockPrice > 50

Output schema: R(sticker, name, country, stockPrice)

34

Selections

What you can use in WHERE:
attribute names of the relation(s) used in the FROM.
comparison operators: =, <>, <, >, <=, >=
apply arithmetic operations: stockprice*2
operations on strings (e.g., “||” for concatenation).
Lexicographic order on strings.
Pattern matching: s LIKE p
Special stuff for comparing dates and times.

35

The LIKELIKELIKELIKE operator

a s LIKE p: pattern matching on strings
a p may contain two special symbols:
` % = any sequence of characters
` _ = any single character

Company(sticker, name, address, country, stockPrice)
Find all US companies whose address has prefix “Mountain”:

SELECT *
FROM Company
WHERE country=“USA” AND

address LIKE “Mountain%”

36

Projections

SELECT name, stockPrice
FROM Company
WHERE country=“USA” AND stockPrice > 50

Select only a subset of the attributes

Input schema: Company(sticker, name, country, stockPrice)
Output schema: R(name, stock price)

7

37

Rename the attributes in the resulting table

Input schema: Company(sticker, name, country, stockPrice)
Output schema: R(company, price)

Projections

SELECT name AS company, stockprice AS price
FROM Company
WHERE country=“USA” AND stockPrice > 50

38

Ordering the Results

SELECT name, stockPrice
FROM Company
WHERE country=“USA” AND stockPrice > 50
ORDERBY country, name

Ordering is ascending, unless you specify the DESC keyword.

Ties are broken by the second attribute on the ORDERBY list, etc.

39

Removing Duplicates

Product(pid, name, maker, category, price)

SELECT DISTINCT category
FROM Product
WHERE price > 100

40

Aggregation

SELECT Sum(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:

SUM, MIN, MAX, AVG, COUNT

41

Aggregation: Count

Except COUNT, all aggregations apply to a single attribute

SELECT Count(*)
FROM Product
WHERE year > 1995

42

Aggregation: Count

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(name, category) same as Count(*)
FROM Product
WHERE year > 1995

Better:

SELECT Count(DISTINCT name, category)
FROM Product
WHERE year > 1995

8

43

Simple Aggregation

Purchase(product, date, price, quantity)

Example 1: find total sales for the entire database

SELECT Sum(price * quantity)
FROM Purchase

Example 1’: find total sales of bagels

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

44

Grouping and Aggregation
Usually, we want aggregations on certain parts of the relation.

Purchase(product, date, price, quantity)

Example 2: find total sales after 9/1 per product.

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

45

Grouping and Aggregation

1. Compute the relation (i.e., the FROM and WHERE).
2. Group by the attributes in the GROUPBY
3. Select one tuple for every group (and apply aggregation)

SELECT can have (1) grouped attributes or (2) aggregates.

46

First compute the relation
(date > “9/1”) then group by product:

Product Date Price Quantity

Banana 10/19 0.52 17

Banana 10/22 0.52 7

Bagel 10/20 0.85 20

Bagel 10/21 0.85 15

47

Then, aggregate

Product TotalSales

Bagel $29.75

Banana $12.48

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

48

Example

SELECT product, Sum(price * quantity) AS SumSales
Max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

For every product, what is the total sales and max quantity sold?

Product SumSales MaxQuantity

Banana $12.48 17

Bagel $29.75 20

9

49

Example

SELECT name, max(stockPrice)
FROM Company
WHERE country=“USA” AND stockPrice > 50
GROUP BY name
HAVING Min(stockprice) > 25

• Partition by stockname
• One aggregation per partition
• Number of output tuples = Number of Partitions

